Lecture 19: Fourier Analysis on the Boolean Hypercube

Functions

- We will deal with functions $f: \{0,1\}^n \to \mathbb{R}$
- Function f can be represented by a vector:

$$(f(0), f(1), \ldots, f(N-1)),$$

where $N = 2^n - 1$

• Any vector in \mathbb{R}^N can be interpreted as a function

Definition (Inner Product)

Inner product of two functions $f, g: \{0, 1\}^n \to \mathbb{R}$ is defined to be:

$$\langle f,g\rangle := \mathop{\mathbb{E}}_{x\sim U_n}[f(x)g(x)] = \frac{1}{N}\sum_{x=0}^{N-1}f(x)g(x)$$

< □ > < ∂ > < ≥ > < ≥ > ≥ <> Lecture 19: Fourier Analysis on the Boolean Hypercube

Definition

For a subset $S \subseteq [n]$, we define the character function $\chi_S \colon \{0,1\}^n \to \mathbb{R}$ as follows:

$$\chi_{\mathcal{S}}(x) = (-1)^{S \cdot x}$$

- We identify S with its characteristic vector $\in \left\{0,1
 ight\}^n$
- There are N such functions
- These *N* functions form an alternate basis to to express the space of all functions

Useful Observation

Lemma

For $A \subseteq [n]$, we have:

х

$$\sum_{\in \{0,1\}^n} (-1)^{\mathcal{A} \cdot x} = egin{cases} \mathsf{N}, & \textit{if } \mathcal{A} = \emptyset \ \mathsf{0}, & \textit{otherwise.} \end{cases}$$

If A = Ø, then ∑_{x∈{0,1}ⁿ}(-1)^{A·x} = ∑_{x∈{0,1}ⁿ}(-1)⁰ = N
If A ≠ Ø, then assume that t ∈ A and A' = A \ {t}

$$\sum_{x \in \{0,1\}^n} (-1)^{A \cdot x} = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} (-1)^{A \cdot x}$$
$$= \sum_{x_{[n] \setminus \{t\}} \in \{0,1\}^{n-1}} \sum_{x_t \in \{0,1\}} (-1)^{A \cdot x}$$
$$= \sum_{x_{[n] \setminus \{t\}} \in \{0,1\}^{n-1}} (-1)^{A' \cdot x_{[n] \setminus \{t\}}} \sum_{x_t \in \{0,1\}} (-1)^{x_t}$$

Lecture 19: Fourier Analysis on the Boolean Hypercube

• Note that
$$\sum_{x_t \in \{0,1\}} (-1)^{x_t} = 0$$

• So, we get

$$\sum_{x \in \{0,1\}^n} (-1)^{\mathcal{A} \cdot x} = \sum_{x_{[n] \setminus \{t\}} \in \{0,1\}^{n-1}} (-1)^{\mathcal{A}' \cdot x_{[n] \setminus \{t\}}} \cdot 0 = 0$$

Lecture 19: Fourier Analysis on the Boolean Hypercube

э

Lemma

 $\{\chi_{S}: S \subseteq [n]\}$ is an orthonormal basis. In particular:

$$\langle \chi_{S}, \chi_{T} \rangle = \begin{cases} 1, & \text{if } S = T \\ 0, & \text{otherwise.} \end{cases}$$

Note that:

$$\langle \chi_S, \chi_T \rangle = \frac{1}{N} \sum_{x \in \{0,1\}^n} (-1)^{S \cdot x} \cdot (-1)^{T \cdot x} = \frac{1}{N} \sum_{x \in \{0,1\}^n} (-1)^{(S \Delta T) \cdot x}$$

- $S \Delta T = \emptyset$ if and only if S = T
- Using previous lemma, we get this result

-

Definition

Fourier Transform Given $f: \{0,1\}^n \to \mathbb{R}$, we define the following function:

$$\widehat{f} = \left(\widehat{f}(S=0), \widehat{f}(S=1), \ldots, \widehat{f}(S=N-1)\right),$$

where, for $S \subseteq [n]$, we define:

$$\widehat{f}(S) = \langle f, \chi_S \rangle$$

- Note that $\widehat{f}(S) = \frac{1}{N} \sum_{x \in \{0,1\}^n} f(x) \chi_S(x)$
- The Fourier transform ${\cal F}$ is a mapping that maps f to \widehat{f}
- And, we have $f = \sum_{S \subseteq [n]} \widehat{f}(S) \chi_S$

Lemma

 $f \mapsto_{\mathcal{F}} \widehat{f}$ is a linear bijective map.

- Consider the matrix $M \in \mathbb{R}^{N \times N}$ such that $M_{i,j} = \frac{1}{N} \chi_j(i)$
- Note that $\hat{f}(j) = \sum_{i \in \{0,1\}^n} f(i) \cdot \frac{1}{N} \chi_j(i) = \sum_{i \in \{0,1\}^n} f(i) \cdot M_{i,j}$
- Therefore, $f \cdot M = \hat{f}$
- This establishes that ${\mathcal F}$ is a linear map
- Note that *M* is a symmetric matrix and $M \cdot (N \cdot M) = I_{N \times N}$ (by orthonormality of the Fourier Basis)
- $\bullet\,$ This establishes that ${\cal F}$ has an inverse and, hence, is a bijection

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Properties and Examples

- $\widehat{(cf)} = c\widehat{f}$ (Follows from Linearity of \mathcal{F})
- $(\widehat{f}) = \frac{1}{N}f$ (Follows from the fact that $M \cdot M = N \cdot I_{N \times N}$)
- Think: If f(x) = g(x c) then what is the relation between \hat{f} and \hat{g} ?

• Let
$$f(x) = 1$$
, for all x, then $\widehat{f}(S) = \begin{cases} 1, & \text{if } S = \emptyset \\ 0, & \text{otherwise.} \end{cases}$
• Let $f = U_n$, then $\widehat{f}(S) = \begin{cases} 1/N, & \text{if } S = \emptyset \\ 0, & \text{otherwise.} \end{cases}$

- Let $f = \delta_0$, then $\widehat{f}(S) = U_n$ (By linearity of \mathcal{F} and the fact that \mathcal{F} is its own (scaled) inverse)
- For any probability distribution f, we have $\widehat{f}(\emptyset) = \frac{1}{N}$

Lemma

Let $V \subseteq \{0,1\}^n$ be a vector space of dimension t. Let $V^{\perp} \subseteq \{0,1\}^n$ be the orthogonal vector space of dimension (n-t). Let $f = U_V$, that is f is a uniform distribution over V and 0everywhere else. Then $\widehat{f}(S) = \begin{cases} \frac{1}{N}, & \text{if } S \in V^{\perp} \\ 0, & \text{otherwise.} \end{cases}$

• Think about a proof.

< □ > < ∂ > < ≥ > < ≥ > ≥ <>
 Lecture 19: Fourier Analysis on the Boolean Hypercube

Properties: Inner-product of Functions

Lemma

$$\langle f,g\rangle = \sum_{S\subseteq [n]} \widehat{f}(S)\widehat{g}(S)$$

•
$$f = \sum_{S} \hat{f}(S)\chi_{S}$$
 and $g = \sum_{T} \hat{g}(T)\chi_{T}$
• So, we have:

$$f,g\rangle = \underset{x \sim U_n}{\mathbb{E}} [f(x) \cdot g(x)]$$

$$= \underset{x \sim U_n}{\mathbb{E}} \left[\left(\sum_{S \subseteq [n]} \widehat{f}(S) \chi_S(x) \right) \cdot \left(\sum_{T \subseteq [n]} \widehat{g}(T) \chi_T(x) \right) \right]$$

$$= \sum_{S \subseteq [n]} \sum_{T \subseteq [n]} \widehat{f}(S) \widehat{g}(T) \underset{x \sim U_n}{\mathbb{E}} [\chi_S(x) \cdot \chi_T(x)]$$

$$= \sum_{S \subseteq [n]} \sum_{T \subseteq [n]} \widehat{f}(S) \widehat{g}(T) \mathbf{1}(S = T) = \sum_{S \subseteq [n]} \widehat{f}(S) \widehat{g}(S)$$

Lecture 19: Fourier Analysis on the Boolean Hypercube

Parseval's Identity

• We define
$$\|f\|_2 = \sqrt{\langle f, f \rangle}$$

• Follows from the inner product of two functions

Statistical Distance from Uniform

Lemma

$$\operatorname{SD}(f, U_n) = \frac{N}{2} \left(\sum_{S \neq \emptyset} \widehat{f}(S)^2 \right)^{1/2}$$

$$2SD(f, U_n) = \sum_{x \in \{0,1\}^n} |f(x) - U_n(x)| = \sum_{x \in \{0,1\}^n} |(f - U_n)(x)|$$

$$\leq N ||f - U_n||_2, \text{ By Chauchy-Schwartz}$$

$$= N \left(\widehat{\sum_{S} (\widehat{f - U_n})(S)^2} \right)^{1/2} = N \left(\sum_{S} \left(\widehat{f}(S) - \widehat{U_n}(S) \right)^2 \right)^{1/2}$$

$$= N \left(\left(\widehat{f}(\emptyset) - \widehat{U_n}(\emptyset) \right)^2 + \sum_{S \neq \emptyset} \left(\widehat{f}(S) - \widehat{U_n}(S) \right)^2 \right)^{1/2}$$

$$= N \left(\sum_{S \neq \emptyset} |\widehat{f}(S) - \widehat{U_n}(S)|^2 \right)^{1/2}$$

Lecture 19: Fourier Analysis on the Boolean Hypercube

Bias

- Let $f_1 \colon \{0,1\} \to [0,1]$ be a probability distribution over one-bit
- $bias(f_1) = 2SD(f_1, U_1)$
- Equivalently: f_1 has bias α if and only if $f_1(b) \in \left\{\frac{1}{2} \frac{\alpha}{2}, \frac{1}{2} + \frac{\alpha}{2}\right\}$, for $b \in \{0, 1\}$

Definition (Bias)

Let f be a probability distribution over $\{0,1\}^n$ and $S \subseteq [n]$. Let f_S be a distribution over $\{0,1\}$ that outputs $\bigoplus_{i \in S} x_i$, when $x \sim f$. We define $bias_S(f) = bias(f_S)$.

• Think: bias_S(f) =
$$N\left|\widehat{f}(S)\right|$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >