Lecture 19: Fourier Analysis on the Boolean Hypercube

Functions

- We will deal with functions $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
- Function f can be represented by a vector:

$$
(f(0), f(1), \ldots, f(N-1))
$$

where $N=2^{n}-1$

- Any vector in \mathbb{R}^{N} can be interpreted as a function

Definition (Inner Product)

Inner product of two functions $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$ is defined to be:

$$
\langle f, g\rangle:=\underset{x \sim U_{n}}{\mathbb{E}}[f(x) g(x)]=\frac{1}{N} \sum_{x=0}^{N-1} f(x) g(x)
$$

Characters

Definition

For a subset $S \subseteq[n]$, we define the character function
$\chi_{s}:\{0,1\}^{n} \rightarrow \mathbb{R}$ as follows:

$$
\chi_{S}(x)=(-1)^{S \cdot x}
$$

- We identify S with its characteristic vector $\in\{0,1\}^{n}$
- There are N such functions
- These N functions form an alternate basis to to express the space of all functions

Useful Observation

Lemma

For $A \subseteq[n]$, we have:

$$
\sum_{x \in\{0,1\}^{n}}(-1)^{A \cdot x}= \begin{cases}N, & \text { if } A=\emptyset \\ 0, & \text { otherwise }\end{cases}
$$

- If $A=\emptyset$, then $\sum_{x \in\{0,1\}^{n}}(-1)^{A \cdot x}=\sum_{x \in\{0,1\}^{n}}(-1)^{0}=N$
- If $A \neq \emptyset$, then assume that $t \in A$ and $A^{\prime}=A \backslash\{t\}$

$$
\begin{aligned}
\sum_{x \in\{0,1\}^{n}}(-1)^{A \cdot x}= & \sum_{x_{1} \in\{0,1\}} \cdots \sum_{x_{n} \in\{0,1\}}(-1)^{A \cdot x} \\
= & \sum_{x_{[n] \backslash\{t\}} \in\{0,1\}^{n-1}} \sum_{x_{t} \in\{0,1\}}(-1)^{A \cdot x} \\
= & \sum_{x_{[n] \backslash\{t\}} \in\{0,1\}^{n-1}}(-1)^{A^{\prime} \cdot x_{[n] \backslash\{t\}}} \sum_{x_{t} \in\{0,1\}}(-1)^{x_{t}}
\end{aligned}
$$

- Note that $\sum_{x_{t} \in\{0,1\}}(-1)^{x_{t}}=0$
- So, we get

$$
\sum_{x \in\{0,1\}^{n}}(-1)^{A \cdot x}=\sum_{x_{[n] \backslash\{t\}} \in\{0,1\}^{n-1}}(-1)^{A^{\prime} \cdot x_{[n] \backslash\{t\}}} \cdot 0=0
$$

Orthonormal Basis

Lemma

$\left\{\chi_{S}: S \subseteq[n]\right\}$ is an orthonormal basis. In particular:

$$
\left\langle\chi_{S}, \chi_{T}\right\rangle= \begin{cases}1, & \text { if } S=T \\ 0, & \text { otherwise }\end{cases}
$$

- Note that:

$$
\left\langle\chi_{S}, \chi_{T}\right\rangle=\frac{1}{N} \sum_{x \in\{0,1\}^{n}}(-1)^{S \cdot x} \cdot(-1)^{T \cdot x}=\frac{1}{N} \sum_{x \in\{0,1\}^{n}}(-1)^{(S \Delta T) \cdot x}
$$

- $S \Delta T=\emptyset$ if and only if $S=T$
- Using previous lemma, we get this result

Definition

Fourier Transform Given $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, we define the following function:

$$
\widehat{f}=(\widehat{f}(S=0), \widehat{f}(S=1), \ldots, \widehat{f}(S=N-1))
$$

where, for $S \subseteq[n]$, we define:

$$
\widehat{f}(S)=\langle f, \chi s\rangle
$$

- Note that $\widehat{f}(S)=\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) \chi_{S}(x)$
- The Fourier transform \mathcal{F} is a mapping that maps f to \widehat{f}
- And, we have $f=\sum_{S \subseteq[n]} \widehat{f}(S) \chi_{S}$

Linear \& Bijective Map

Lemma

$f \mapsto_{\mathcal{F}} \widehat{f}$ is a linear bijective map.

- Consider the matrix $M \in \mathbb{R}^{N \times N}$ such that $M_{i, j}=\frac{1}{N} \chi_{j}(i)$
- Note that $\widehat{f}(j)=\sum_{i \in\{0,1\}^{n}} f(i) \cdot \frac{1}{N} \chi_{j}(i)=\sum_{i \in\{0,1\}^{n}} f(i) \cdot M_{i, j}$
- Therefore, $f \cdot M=\widehat{f}$
- This establishes that \mathcal{F} is a linear map
- Note that M is a symmetric matrix and $M \cdot(N \cdot M)=I_{N \times N}$ (by orthonormality of the Fourier Basis)
- This establishes that \mathcal{F} has an inverse and, hence, is a bijection

Properties and Examples

- $\widehat{(c f)}=c \widehat{f}$ (Follows from Linearity of \mathcal{F})
- $\widehat{(\widehat{f})}=\frac{1}{N} f$ (Follows from the fact that $M \cdot M=N \cdot I_{N \times N}$)
- Think: If $f(x)=g(x-c)$ then what is the relation between \widehat{f} and \widehat{g} ?
- Let $f(x)=1$, for all x, then $\widehat{f}(S)= \begin{cases}1, & \text { if } S=\emptyset \\ 0, & \text { otherwise. }\end{cases}$
- Let $f=U_{n}$, then $\widehat{f}(S)= \begin{cases}1 / N, & \text { if } S=\emptyset \\ 0, & \text { otherwise. }\end{cases}$
- Let $f=\delta_{0}$, then $\widehat{f}(S)=U_{n}$ (By linearity of \mathcal{F} and the fact that \mathcal{F} is its own (scaled) inverse)
- For any probability distribution f, we have $\widehat{f}(\emptyset)=\frac{1}{N}$

Example

Lemma

Let $V \subseteq\{0,1\}^{n}$ be a vector space of dimension t. Let $V^{\perp} \subseteq\{0,1\}^{n}$ be the orthogonal vector space of dimension $(n-t)$. Let $f=U_{V}$, that is f is a uniform distribution over V and 0 everywhere else. Then $\widehat{f}(S)=\left\{\begin{array}{ll}\frac{1}{N}, & \text { if } S \in V^{\perp} \\ 0, & \text { otherwise. }\end{array}\right.$.

- Think about a proof.

Properties: Inner-product of Functions

Lemma

$$
\langle f, g\rangle=\sum_{S \subseteq[n]} \widehat{f}(S) \widehat{g}(S)
$$

- $f=\sum_{S} \widehat{f}(S) \chi_{S}$ and $g=\sum_{T} \widehat{g}(T) \chi_{T}$
- So, we have:

$$
\begin{aligned}
\langle f, g\rangle & =\underset{x \sim U_{n}}{\mathbb{E}}[f(x) \cdot g(x)] \\
& =\underset{x \sim U_{n}}{\mathbb{E}}\left[\left(\sum_{S \subseteq[n]} \widehat{f}(S) \chi x(x)\right) \cdot\left(\sum_{T \subseteq[n]} \widehat{g}(T) \chi_{T}(x)\right)\right] \\
& =\sum_{S \subseteq[n]} \sum_{T \subseteq[n]} \widehat{f}(S) \widehat{g}(T) \underset{x \sim U_{n}}{\mathbb{E}}\left[\chi_{S}(x) \cdot \chi_{T}(x)\right] \\
& =\sum_{S \subseteq[n]} \sum_{T \subseteq[n]} \widehat{f}(S) \widehat{g}(T) \mathbf{1}(S=T)=\sum_{S \subseteq[n]} \widehat{f}(S) \widehat{g}(S)
\end{aligned}
$$

Parseval's Identity

- We define $\|f\|_{2}=\sqrt{\langle f, f\rangle}$

Lemma (Parseval's Identity)

$$
\|f\|_{2}^{2}=\sum_{S \subseteq[n]} \widehat{f}(S)^{2}
$$

- Follows from the inner product of two functions

Statistical Distance from Uniform

Lemma

$$
\mathrm{SD}\left(f, U_{n}\right)=\frac{N}{2}\left(\sum_{S \neq \emptyset} \widehat{f}(S)^{2}\right)^{1 / 2}
$$

$$
\begin{aligned}
2 \operatorname{SD}\left(f, U_{n}\right) & =\sum_{x \in\{0,1\}^{n}}\left|f(x)-U_{n}(x)\right|=\sum_{x \in\{0,1\}^{n}}\left|\left(f-U_{n}\right)(x)\right| \\
& \leqslant N\left\|f-U_{n}\right\|_{2}, \text { By Chauchy-Schwartz } \\
& =N\left(\sum_{S}\left(\widehat{f-U_{n}}\right)(S)^{2}\right)^{1 / 2}=N\left(\sum_{S}\left(\widehat{f}(S)-\widehat{U}_{n}(S)\right)^{2}\right)^{1 /} \\
& =N\left(\left(\widehat{f}(\emptyset)-\widehat{U_{n}}(\emptyset)\right)^{2}+\sum_{S \neq \emptyset}\left(\widehat{f}(S)-\widehat{U_{n}}(S)\right)^{2}\right)^{1 / 2}
\end{aligned}
$$

- Let $f_{1}:\{0,1\} \rightarrow[0,1]$ be a probability distribution over one-bit
- $\operatorname{bias}\left(f_{1}\right)=2 \operatorname{SD}\left(f_{1}, U_{1}\right)$
- Equivalently: f_{1} has bias α if and only if

$$
f_{1}(b) \in\left\{\frac{1}{2}-\frac{\alpha}{2}, \frac{1}{2}+\frac{\alpha}{2}\right\}, \text { for } b \in\{0,1\}
$$

Definition (Bias)

Let f be a probability distribution over $\{0,1\}^{n}$ and $S \subseteq[n]$. Let f_{S} be a distribution over $\{0,1\}$ that outputs $\oplus_{i \in S} x_{i}$, when $x \sim f$. We define $\operatorname{bias}_{S}(f)=\operatorname{bias}\left(f_{S}\right)$.

- Think: $\operatorname{bias}_{S}(f)=N|\widehat{f}(S)|$

